LA ENERGÍA NUCLEAR
La energía nuclear o atómica es la que se libera espontánea o artificialmente en las reacciones nucleares. Sin embargo, este término engloba otro significado que es el aprovechamiento de dicha energía para otros fines, tales como la obtención de energía eléctrica, energía térmica y energía mecánica a partir de reacciones atómicas.1 Así, es común referirse a la energía nuclear no solo como el resultado de una reacción, sino como un concepto más amplio que incluye los conocimientos y técnicas que permiten la utilización de esta energía por parte del ser humano.
Estas reacciones se dan en los núcleos atómicos de algunos isótopos de ciertos elementos químicos (radioisótopos), siendo la más conocida la fisión del uranio-235 (235U), con la que funcionan los reactores nucleares, y la más habitual en la naturaleza, en el interior de las estrellas, la fusión del par deuterio-tritio (2H-3H). Sin embargo, para producir este tipo de energía aprovechando reacciones nucleares pueden ser utilizados muchos otros isótopos de varios elementos químicos, como el torio-232, el plutonio-239, el estroncio-90 o el polonio-210 (232Th, 239Pu, 90Sr, 210Po; respectivamente).
Existen varias disciplinas y/o técnicas que usan de base la energía nuclear y van desde la generación de energía eléctrica en las centrales nucleares hasta las técnicas de análisis de datación arqueológica (arqueometría nuclear), la medicina nuclear usada en los hospitales, etc.
Los sistemas más investigados y trabajados para la obtención de energía aprovechable a partir de la energía nuclear de forma masiva son la fisión nuclear y la fusión nuclear. La energía nuclear puede transformarse de forma descontrolada, dando lugar al armamento nuclear; o controlada en reactores nucleares en los que se produce energía eléctrica, energía mecánica o energía térmica. Tanto los materiales usados como el diseño de las instalaciones son completamente diferentes en cada caso.
Otra técnica, empleada principalmente en pilas de mucha duración para sistemas que requieren poco consumo eléctrico, es la utilización de generadores termoeléctricos de radioisótopos (GTR, o RTG en inglés), en los que se aprovechan los distintos modos de desintegración para generar electricidad en sistemas de termopares a partir del calor transferido por una fuente radiactiva.
La energía desprendida en esos procesos nucleares suele aparecer en forma de partículas subatómicas en movimiento. Esas partículas, al frenarse en la materia que las rodea, producen energía térmica. Esta energía térmica se transforma en energía mecánica utilizando motores de combustión externa, como las turbinas de vapor. Dicha energía mecánica puede ser empleada en el transporte, como por ejemplo en los buques nucleares.
La principal característica de este tipo de energía es la alta calidad de la energía que puede producirse por unidad de masa de material utilizado en comparación con cualquier otro tipo de energía conocida por el ser humano, pero sorprende la poca eficiencia del proceso, ya que se desaprovecha entre un 86 % y 92 % de la energía que se libera.2
En las reacciones nucleares se suele liberar una grandísima cantidad de energía debido en parte a que la masa de partículas involucradas en este proceso, se transforma directamente en energía. Lo anterior se suele explicar basándose en la relación masa-energía propuesta por el físico Albert Einstein.
Las reacciones nucleares
En 1896 Henri Becquerel descubrió que algunos elementos químicos emitían radiaciones.3 Tanto él como Marie Curie y otros estudiaron sus propiedades, descubriendo que estas radiaciones eran diferentes de los ya conocidos rayos X y que poseían propiedades distintas, denominando a los tres tipos que consiguieron descubrir alfa, beta y gamma.
Pronto se vio que todas ellas provenían del núcleo atómico que describió Ernest Rutherford en 1911.
Con el descubrimiento del neutrino, partícula descrita teóricamente en 1930 por Wolfgang Pauli pero no detectada hasta 1956 por Clyde Cowan y sus colaboradores, se pudo explicar la radiación beta.
En 1932 James Chadwick descubrió la existencia del neutrón que Pauli había predicho en 1930, e inmediatamente después Enrico Fermi descubrió que ciertas radiaciones emitidas en fenómenos no muy comunes de desintegración eran en realidad estos neutrones.
Durante los años 1930, Enrico Fermi y sus colaboradores bombardearon con neutrones más de 60 elementos, entre ellos 235Uranio, produciendo las primeras fisiones nucleares artificiales. En 1938, en Alemania, Lise Meitner, Otto Hahn y Fritz Strassmann verificaron los experimentos de Fermi y en 1939 demostraron que parte de los productos que aparecían al llevar a cabo estos experimentos con uranio eran núcleos de bario. Muy pronto llegaron a la conclusión de que eran resultado de la división de los núcleos del uranio. Se había llevado a cabo el descubrimiento de la fisión.
En Francia, Joliot Curie descubrió que además del bario, se emitían neutrones secundarios en esa reacción, haciendo factible la reacción en cadena.
También en 1932 Mark Oliphant teorizó sobre la fusión de núcleos ligeros (de hidrógeno), describiendo poco después Hans Bethe el funcionamiento de las estrellas, basándose en este mecanismo.
Véanse también: Radiactividad, Fuerzas nucleares y Procesos nucleares.
La fisión nuclear
En física nuclear, la fisión es una reacción nuclear, lo que significa que tiene lugar en el núcleo atómico. La fisión ocurre cuando un núcleo pesado se divide en dos o más núcleos pequeños, además de algunos subproductos como neutrones libres, fotones (generalmente rayos gamma) y otros fragmentos del núcleo como partículas alfa (núcleos de helio) y beta (electrones y positrones de alta energía).
Durante la Segunda Guerra Mundial, el Departamento de Desarrollo de Armamento de la Alemania nazi desarrolló un proyecto de energía nuclear (Proyecto Uranio) con vistas a la producción de un artefacto explosivo nuclear. Albert Einstein, en 1939, firmó una carta al presidente Franklin Delano Roosevelt de los Estados Unidos, escrita por Leó Szilárd, en la que se prevenía sobre este hecho.4
El 2 de diciembre de 1942, como parte del proyecto Manhattan dirigido por J. Robert Oppenheimer, se construyó el primer reactor del mundo hecho por el ser humano (existió un reactor natural en Oklo): el Chicago Pile-1 (CP-1).
Como parte del mismo programa militar, se construyó un reactor mucho mayor en Hanford, destinado a la producción de plutonio, y al mismo tiempo, un proyecto de enriquecimiento de uranio en cascada. El 16 de julio de 1945 fue probada la primera bomba nuclear (nombre en clave Trinity) en el desierto de Alamogordo. En esta prueba se llevó a cabo una explosión equivalente a 19 000 000 kg de TNT (19 kilotones), una potencia jamás observada anteriormente en ningún otro explosivo. Ambos proyectos desarrollados finalizaron con la construcción de dos bombas, una de uranio enriquecido y una de plutonio (Little Boy y Fat Man) que fueron lanzadas sobre las ciudades japonesas de Hiroshima (6 de agosto de 1945) y Nagasaki (9 de agosto de 1945) respectivamente. El 15 de agosto de 1945 acabó la segunda guerra mundial en el Pacífico con la rendición de Japón. Por su parte el programa de armamento nuclear alemán (liderado este por Werner Heisenberg), no alcanzó su meta antes de la rendición de Alemania el 8 de mayo de 1945.
Posteriormente se llevaron a cabo programas nucleares en la Unión Soviética (primera prueba de una bomba de fisión el 29 de agosto de 1949), Francia y Gran Bretaña, comenzando la carrera armamentística en ambos bloques creados tras la guerra, alcanzando límites de potencia destructiva nunca antes sospechada por el ser humano (cada bando podía derrotar y destruir varias veces a todos sus enemigos).
Ya en la década de 1940, el almirante Hyman Rickover propuso la construcción de reactores de fisión no encaminados esta vez a la fabricación de material para bombas, sino a la generación de electricidad. Se pensó, acertadamente, que estos reactores podrían constituir un gran sustituto del diésel en los submarinos. Se construyó el primer reactor de prueba en 1953, botando el primer submarino nuclear (el USS Nautilus (SSN-571)) el 17 de enero de 1955 a las 11:00. El Departamento de Defensa estadounidense propuso el diseño y construcción de un reactor nuclear utilizable para la generación eléctrica y propulsión en los submarinos a dos empresas distintas norteamericanas: General Electric y Westinghouse. Estas empresas desarrollaron los reactores de agua ligera tipo BWR y PWR respectivamente.
Estos reactores se han utilizado para la propulsión de buques, tanto de uso militar (submarinos, cruceros, portaaviones,...) como civil (rompehielos y cargueros), donde presentan unas características de potencia, reducción del tamaño de los motores, reducción de las necesidades de almacenamiento de combustible y autonomía no superadas por ninguna otra técnica existente.
Los mismos diseños de reactores de fisión se trasladaron a diseños comerciales para la generación de electricidad. Los únicos cambios producidos en el diseño con el transcurso del tiempo fueron un aumento de las medidas de seguridad, una mayor eficiencia termodinámica, un aumento de potencia y el uso de las nuevas tecnologías que fueron apareciendo.
Entre 1950 y 1960 Canadá desarrolló un nuevo tipo, basado en el PWR, que utilizaba agua pesada como moderador y uranio natural como combustible, en lugar del uranio enriquecido utilizado por los diseños de agua ligera. Otros diseños de reactores para su uso comercial utilizaron carbono (Magnox, AGR, RBMK o PBR entre otros) o sales fundidas (litio o berilio entre otros) como moderador. Este último tipo de reactor fue parte del diseño del primer avión bombardero (1954) con propulsión nuclear (el US Aircraft Reactor Experiment o ARE). Este diseño se abandonó tras el desarrollo de los misiles balísticos intercontinentales (ICBM).
Otros países (Francia, Italia, entre otros) desarrollaron sus propios diseños de reactores nucleares comerciales para la generación de energía eléctrica.
En 1946 se construyó el primer reactor de neutrones rápidos (Clementine) en Los Álamos, con plutonio como combustible y mercurio como refrigerante. En 1951 se construyó el EBR-I, el primer reactor rápido con el que se consiguió generar electricidad. En 1996, el Superfénix o SPX, fue el reactor rápido de mayor potencia construido hasta el momento (1200 MWe). En este tipo de reactores se pueden utilizar como combustible los radioisótopos del plutonio, el torio y el uranio que no son fisibles con neutrones térmicos (lentos).
En la década de los 50 Ernest Lawrence propuso la posibilidad de utilizar reactores nucleares con geometrías inferiores a la criticidad (reactores subcríticos cuyo combustible podría ser el torio), en los que la reacción sería soportada por un aporte externo de neutrones. En 1993 Carlo Rubbia propone utilizar una instalación de espalación en la que un acelerador de protones produjera los neutrones necesarios para mantener la instalación. A este tipo de sistemas se les conoce como Sistemas asistidos por aceleradores (en inglés Accelerator driven systems, ADS sus siglas en inglés), y se prevé que la primera planta de este tipo (MYRRHA) comience su funcionamiento el 2033 en el centro de Mol (Bélgica).56
La fusión nuclear
En física nuclear, la fusión nuclear es el proceso por el cual varios núcleos atómicos de carga similar se unen y forman un núcleo más pesado. Simultáneamente se libera o absorbe una cantidad enorme de energía, que permite a la materia entrar en un estado plasmático. La fusión de dos núcleos de menor masa que el hierro (en este elemento y en el níquel ocurre la mayor energía de enlace nuclear por nucleón) libera energía en general. Por el contrario, la fusión de núcleos más pesados que el hierro absorbe energía. En el proceso inverso, la fisión nuclear, estos fenómenos suceden en sentidos opuestos. Hasta el principio del siglo XX no se entendía la forma en que se generaba energía en el interior de las estrellas necesaria para contrarrestar el colapso gravitatorio de estas. No existía reacción química con la potencia suficiente y la fisión tampoco era capaz. En 1938 Hans Bethe logró explicarlo mediante reacciones de fusión, con el ciclo CNO, para estrellas muy pesadas. Posteriormente se descubrió el ciclo protón-protón para estrellas de menor masa, como el Sol.
En los años 1940, como parte del proyecto Manhattan, se estudió la posibilidad del uso de la fusión en la bomba nuclear. En 1942 se investigó la posibilidad del uso de una reacción de fisión como método de ignición para la principal reacción de fusión, sabiendo que podría resultar en una potencia miles de veces superior. Sin embargo, tras finalizar la Segunda Guerra Mundial, el desarrollo de una bomba de estas características no fue considerado primordial hasta la explosión de la primera bomba atómica rusa en 1949, RDS-1 o Joe-1. Este evento provocó que en 1950 el presidente estadounidense Harry S. Truman anunciara el comienzo de un proyecto que desarrollara la bomba de hidrógeno. El 1 de noviembre de 1952 se probó la primera bomba nuclear (nombre en clave Mike, parte de la Operación Ivy o Hiedra), con una potencia equivalente a 10 400 000 000 de kg de TNT (10,4 megatones). El 12 de agosto de 1953 la Unión Soviética realiza su primera prueba con un artefacto termonuclear (su potencia alcanzó algunos centenares de kilotones).
Las condiciones necesarias para alcanzar la ignición de un reactor de fusión controlado, sin embargo, no fueron derivadas hasta 1955 por John D. Lawson.7 Los criterios de Lawson definieron las condiciones mínimas necesarias de tiempo, densidad y temperatura que debía alcanzar el combustible nuclear (núcleos de hidrógeno) para que la reacción de fusión se mantuviera. Sin embargo, ya en 1946 se patentó el primer diseño de reactor termonuclear.8 En 1951 comenzó el programa de fusión de Estados Unidos, sobre la base del stellarator. En el mismo año comenzó en la Unión Soviética el desarrollo del primer Tokamak, dando lugar a sus primeros experimentos en 1956. Este último diseño logró en 1968 la primera reacción termonuclear cuasi-estacionaria jamás conseguida, demostrándose que era el diseño más eficiente conseguido hasta la época. ITER, el diseño internacional que tiene fecha de comienzo de sus operaciones en el año 2016 y que intentará resolver los problemas existentes para conseguir un reactor de fusión de confinamiento magnético, utiliza este diseño
En 1962 se propuso otra técnica para alcanzar la fusión basada en el uso de láseres para conseguir una implosión en pequeñas cápsulas llenas de combustible nuclear (de nuevo núcleos de hidrógeno). Sin embargo hasta la década de los 70 no se desarrollaron láseres suficientemente potentes. Sus inconvenientes prácticos hicieron de esta una opción secundaria para alcanzar el objetivo de un reactor de fusión. Sin embargo, debido a los tratados internacionales que prohibían la realización de ensayos nucleares en la atmósfera, esta opción (básicamente microexplosiones termonucleares) se convirtió en un excelente laboratorio de ensayos para los militares, con lo que consiguió financiación para su continuación. Así, se han construido el National Ignition Facility (NIF, con inicio de sus pruebas programadas para 2010) estadounidense y el Laser Mégajoule francés (LMJ), que persiguen el mismo objetivo de conseguir un dispositivo que consiga mantener la reacción de fusión a partir de este diseño. Ninguno de los proyectos de investigación actualmente en marcha predicen una ganancia de energía significativa, por lo que está previsto un proyecto posterior que pudiera dar lugar a los primeros reactores de fusión comerciales (DEMO con confinamiento magnético e HiPER con confinamiento inercial).
Otros sistemas de energía nuclear
Con la invención de la pila química por Volta en 1800 se dio lugar a una forma compacta y portátil de generación de energía. A partir de entonces fue incesante la búsqueda de sistemas que fueran aún menores y que tuvieran una mayor capacidad y duración. Este tipo de pilas, con pocas variaciones, han sido suficientes para muchas aplicaciones diarias hasta nuestros tiempos. Sin embargo, en el siglo XX surgieron nuevas necesidades, a causa principalmente de los programas espaciales. Se precisaban entonces sistemas que tuvieran una duración elevada para consumos eléctricos moderados y un mantenimiento nulo. Surgieron varias soluciones (como los paneles solares o las células de combustible), pero según se incrementaban las necesidades energéticas y aparecían nuevos problemas (las placas solares son inútiles en ausencia de luz solar), se comenzó a estudiar la posibilidad de utilizar la energía nuclear en estos programas.
A mediados de la década de los 50 comenzaron en Estados Unidos las primeras investigaciones encaminadas a estudiar las aplicaciones nucleares en el espacio. De estas surgieron los primeros prototipos de los generadores termoeléctricos de radioisótopos (RTG). Estos dispositivos mostraron ser una alternativa sumamente interesante tanto en las aplicaciones espaciales como en aplicaciones terrestres específicas. En estos artefactos se aprovechan las desintegraciones alfa y beta, convirtiendo toda o gran parte de la energía cinética de las partículas emitidas por el núcleo en calor. Este calor es después transformado en electricidad aprovechando el efecto Seebeck mediante unos termopares, consiguiendo eficiencias aceptables (entre un 5 y un 40 % es lo habitual). Los radioisótopos habitualmente utilizados son 210Po, 244Cm, 238Pu, 241Am, entre otros 30 que se consideraron útiles. Estos dispositivos consiguen capacidades de almacenamiento de energía 4 órdenes de magnitud superiores (10 000 veces mayor) a las baterías convencionales.
En 1959 se mostró al público el primer generador atómico.9 En 1961 se lanzó al espacio el primer RTG, a bordo del SNAP 3. Esta batería nuclear, que alimentaba a un satélite de la armada norteamericana con una potencia de 2,7 W, mantuvo su funcionamiento ininterrumpido durante 15 años
Estos sistemas se han utilizado y se siguen usando en programas espaciales muy conocidos (Pioneer, Voyager, Galileo, Apolo y Ulises entre otros). Así por ejemplo en 1972 y 1973 se lanzaron los Pioneer 10 y 11, convirtiéndose el primero de ellos en el primer objeto humano de la historia que abandonaba el sistema solar. Ambos satélites continuaron funcionando hasta 17 años después de sus lanzamientos.
La misión Ulises (misión conjunta ESA-NASA) se envió en 1990 para estudiar el Sol, siendo la primera vez que un satélite cruzaba ambos polos solares. Para poder hacerlo hubo que enviar el satélite en una órbita alrededor de Júpiter. Debido a la duración del RTG que mantiene su funcionamiento se prolongó la misión de modo que se pudiera volver a realizar otro viaje alrededor del Sol. Aunque pareciera extraño que este satélite no usara paneles solares en lugar de un RTG, puede entenderse al comparar sus pesos (un panel de 544 kg generaba la misma potencia que un RTG de 56). En aquellos años no existía un cohete que pudiera enviar a su órbita al satélite con ese peso extra.
Estas baterías no solo proporcionan electricidad, sino que en algunos casos, el propio calor generado se utiliza para evitar la congelación de los satélites en viajes en los que el calor del Sol no es suficiente, por ejemplo en viajes fuera del sistema solar o en misiones a los polos de la Luna.
En 1965 se instaló el primer RTG terrestre para el faro de la isla deshabitada Fairway Rock, permaneciendo en funcionamiento hasta 1995, momento en el que se desmanteló. Otros muchos faros situados en zonas inaccesibles cercanas a los polos (sobre todo en la Unión Soviética), utilizaron estos sistemas. Se sabe que la Unión Soviética fabricó más de 1000 unidades para estos usos.
Una aplicación que se dio a estos sistemas fue su uso como marcapasos.10 Hasta los 70 se usaba para estas aplicaciones baterías de mercurio-zinc, que tenían una duración de unos 3 años. En esta década se introdujeron las baterías nucleares para aumentar la longevidad de estos artefactos, posibilitando que un paciente joven tuviera implantado solo uno de estos artefactos para toda su vida. En los años 1960, la empresa Medtronic contactó con Alcatel para diseñar una batería nuclear, implantando el primer marcapasos alimentado con un RTG en un paciente en 1970 en París. Varios fabricantes construyeron sus propios diseños, pero a mediados de esta década fueron desplazados por las nuevas baterías de litio, que poseían vidas de unos 10 años (considerado suficiente por los médicos aunque debiera sustituirse varias veces hasta la muerte del paciente). A mediados de los años 1980 se detuvo el uso de estos implantes, aunque aún existen personas que siguen portando este tipo de dispositivos.
Fundamentos físicos
Sir James Chadwick descubrió el neutrón en 1932, año que puede considerarse como el inicio de la física nuclear moderna.11
El modelo de átomo propuesto por Niels Bohr consiste en un núcleo central compuesto por partículas que concentran la mayoría de la masa del átomo (neutrones y protones), rodeado por varias capas de partículas cargadas casi sin masa (electrones). Mientras que el tamaño del átomo resulta ser del orden del angstrom (10-10 m), el núcleo puede medirse en fermis (10-15 m), o sea, el núcleo es 100 000 veces menor que el átomo.
Todos los átomos neutros (sin carga eléctrica) poseen el mismo número de electrones que de protones. Un elemento químico se puede identificar de forma inequívoca por el número de protones que posee su núcleo; este número se llama número atómico (Z). El número de neutrones (N) sin embargo puede variar para un mismo elemento. Para valores bajos de Z ese número tiende a ser muy parecido al de protones, pero al aumentar Z se necesitan más neutrones para mantener la estabilidad del núcleo. A los átomos a los que solo les distingue el número de neutrones en su núcleo (en definitiva, su masa), se les llama isótopos de un mismo elemento. La masa atómica de un isótopo viene dada por u, el número de protones más el de neutrones (nucleones) que posee en su núcleo.
Para denominar un isótopo suele utilizarse la letra que indica el elemento químico, con un superíndice que es la masa atómica y un subíndice que es el número atómico (p. ej. el isótopo 238 del uranio se escribiría como ).
El núcleo
Los neutrones y protones que forman los núcleos tienen una masa aproximada de 1 u, estando el protón cargado eléctricamente con carga positiva +1, mientras que el neutrón no posee carga eléctrica. Teniendo en cuenta únicamente la existencia de las fuerzas electromagnética y gravitatoria, el núcleo sería inestable (ya que las partículas de igual carga se repelerían deshaciendo el núcleo), haciendo imposible la existencia de la materia. Por este motivo (ya que es obvio que la materia existe) fue necesario añadir a los modelos una tercera fuerza: la fuerza fuerte (hoy en día fuerza nuclear fuerte residual). Esta fuerza debía tener como características, entre otras, que era muy intensa, atractiva a distancias muy cortas (solo en el interior de los núcleos), siendo repulsiva a distancias más cortas (del tamaño de un nucleón), que era central en cierto rango de distancias, que dependía del espín y que no dependía del tipo de nucleón (neutrones o protones) sobre el que actuaba. En 1935, Hideki Yukawa dio una primera solución a esta nueva fuerza estableciendo la hipótesis de la existencia de una nueva partícula: el mesón. El más ligero de los mesones, el pion, es el responsable de la mayor parte del potencial entre nucleones de largo alcance (1 rfm). El potencial de Yukawa (potencial OPEP) que describe adecuadamente la interacción para dos partículas de espines y respectivamente, se puede escribir como:
Otros experimentos que se realizaron sobre los núcleos indicaron que su forma debía de ser aproximadamente esférica de radio fm, siendo A la masa atómica, es decir, la suma de neutrones y protones. Esto exige además que la densidad de los núcleos sea la misma (, es decir el volumen es proporcional a A. Como la densidad se halla dividiendo la masa por el volumen ). Esta característica llevó a la equiparación de los núcleos con un líquido, y por tanto al modelo de la gota líquida, fundamental en la comprensión de la fisión de los núcleos.
La masa de un núcleo, sin embargo, no resulta exactamente de la suma de sus nucleones. Tal y como demostró Albert Einstein, la energía que mantiene unidos a esos nucleones es la diferencia entre la masa del núcleo y la de sus elementos, y viene dada por la ecuación . Así, pesando los distintos átomos por una parte, y sus componentes por otra, puede determinarse la energía media por nucleón que mantiene unidos a los diferentes núcleos.
En la gráfica puede contemplarse como los núcleos muy ligeros poseen menos energía de ligadura que los que son un poco más pesados (la parte izquierda de la gráfica). Esta característica es la base de la liberación de la energía en la fusión. Y, al contrario, en la parte de la derecha se ve que los elementos muy pesados tienen menor energía de ligadura que los que son algo más ligeros. Esta es la base de la emisión de energía por fisión. Como se ve, es mucho mayor la diferencia en la parte de la izquierda (fusión) que en la de la derecha (fisión).
Fisión
Fermi, tras el descubrimiento del neutrón, realizó una serie de experimentos en los que bombardeaba distintos núcleos con estas nuevas partículas. En estos experimentos observó que cuando utilizaba neutrones de energías bajas, en ocasiones el neutrón era absorbido emitiéndose fotones.
Para averiguar el comportamiento de esta reacción repitió el experimento sistemáticamente en todos los elementos de la tabla periódica. Así descubrió nuevos elementos radiactivos, pero al llegar al uranio obtuvo resultados distintos. Lise Meitner, Otto Hahn y Fritz Strassmann consiguieron explicar el nuevo fenómeno al suponer que el núcleo de uranio al capturar el neutrón se escindía en dos partes de masas aproximadamente iguales. De hecho detectaron bario, de masa aproximadamente la mitad que la del uranio. Posteriormente se averiguó que esa escisión (o fisión) no se daba en todos los isótopos del uranio, sino solo en el 235U. Y más tarde aún, se supo que esa escisión podía dar lugar a muchísimos elementos distintos, cuya distribución de aparición es muy típica (similar a la doble joroba de un camello).
En la fisión de un núcleo de uranio, no solo aparecen dos núcleos más ligeros resultado de la división del de uranio, sino que además se emiten 2 o 3 (en promedio 2,5 en el caso del 235U) neutrones a una alta velocidad (energía). Como el uranio es un núcleo pesado no se cumple la relación N=Z (igual número de protones que de neutrones) que sí se cumple para los elementos más ligeros, por lo que los productos de la fisión poseen un exceso de neutrones. Este exceso de neutrones hace inestables (radiactivos) a esos productos de fisión, que alcanzan la estabilidad al desintegrarse los neutrones excedentes por desintegración beta generalmente. La fisión del 235U puede producirse en más de 40 formas diferentes, originándose por tanto más de 80 productos de fisión distintos, que a su vez se desintegran formando cadenas de desintegración, por lo que finalmente aparecen cerca de 200 elementos a partir de la fisión del uranio.
La energía desprendida en la fisión de cada núcleo de 235U es en promedio de 200 MeV. Los minerales explotados para la extracción del uranio suelen poseer contenidos de alrededor de 1 gramo de uranio por kg de mineral (la pechblenda por ejemplo). Como el contenido de 235U en el uranio natural es de un 0,7 %, se obtiene que por cada kg de mineral extraído tendríamos átomos de 235U. Si fisionamos todos esos átomos (1 gramo de uranio) obtendríamos teóricamente una energía liberada de por gramo. En comparación, por la combustión de 1 kg de carbón de la mejor calidad (antracita) se obtiene una energía de unos , es decir, se necesitan más de 10 toneladas de antracita (el tipo de carbón con mayor poder calorífico) para obtener la misma energía contenida en 1 kg de uranio natural.
La aparición de los 2,5 neutrones por cada fisión posibilita la idea de llevar a cabo una reacción en cadena, si se logra hacer que de esos 2,5 al menos un neutrón consiga fisionar un nuevo núcleo de uranio. La idea de la reacción en cadena es común en otros procesos químicos. Los neutrones emitidos por la fisión no son útiles inmediatamente si lo que se quiere es controlar la reacción, sino que hay que frenarlos (moderarlos) hasta una velocidad adecuada. Esto se consigue rodeando los átomos por otro elemento con un Z pequeño, como por ejemplo hidrógeno, carbono o litio, material denominado moderador.
Otros átomos que pueden fisionar con neutrones lentos son el 233U o el 239Pu. Sin embargo también es posible la fisión con neutrones rápidos (de energías altas), como por ejemplo el 238U (140 veces más abundante que el 235U) o el 232Th (400 veces más abundante que el 235U).
La teoría elemental de la fisión la proporcionaron Bohr y Wheeler, utilizando un modelo según el cual los núcleos de los átomos se comportan como gotas líquidas.
La fisión se puede conseguir también mediante partículas alfa, protones o deuterones.
Fusión[editar]
Así como la fisión es un fenómeno que aparece en la corteza terrestre de forma natural (si bien con una frecuencia pequeña), la fusión es absolutamente artificial en nuestro entorno (aunque es común el núcleo de las estrellas). Sin embargo, esta energía posee ventajas con respecto a la fisión. Por un lado el combustible es abundante y fácil de conseguir, y por otro, sus productos son elementos estables, ligeros y no radiactivos.
En la fusión, al contrario que en la fisión donde se dividen los núcleos, la reacción consiste en la unión de dos o más núcleos ligeros. Esta unión da lugar a un núcleo más pesado que los usados inicialmente y a neutrones. La fusión se consiguió antes incluso de comprender completamente las condiciones que se necesitaban en el desarrollo de armas, limitándose a conseguir condiciones extremas de presión y temperatura usando una bomba de fisión como elemento iniciador (Proceso Teller-Ulam). Pero no es hasta que Lawson define unos criterios de tiempo, densidad y temperatura mínimos7 cuando se comienza a comprender el funcionamiento de la fusión.
Aunque en las estrellas la fusión se da entre una variedad de elementos químicos, el elemento con el que es más sencillo alcanzarla es el hidrógeno. El hidrógeno posee tres isótopos: el hidrógeno común (), el deuterio () y el tritio (). Esto es así porque la fusión requiere que se venza la repulsión electrostática que experimentan los núcleos al unirse, por lo que a menor carga eléctrica, menor será esta. Además, a mayor cantidad de neutrones, más pesado será el núcleo resultante (más arriba estaremos en la gráfica de las energías de ligadura), con lo que mayor será la energía liberada en la reacción.
En esta reacción se liberan 17,6 MeV por fusión, más que en el resto de combinaciones con isótopos de hidrógeno. Además esta reacción proporciona un neutrón muy energético que puede aprovecharse para generar combustible adicional para reacciones posteriores de fusión, utilizando litio, por ejemplo. La energía liberada por gramo con esta reacción es casi mil veces mayor que la lograda en la fisión de un gramo de uranio natural (unas siete veces superior si fuera un gramo de 235U puro).
Para vencer la repulsión electrostática, es necesario que los núcleos a fusionar alcancen una energía cinética de aproximadamente 10 keV. Esta energía se obtiene mediante un intenso calentamiento (igual que en las estrellas, donde se alcanzan temperaturas de 108 K), que implica un movimiento de los átomos igual de intenso. Además de esa velocidad para vencer la repulsión electrostática, la probabilidad de que se produzca la fusión debe ser elevada para que la reacción suceda. Esto implica que se deben poseer suficientes átomos con energía suficiente durante un tiempo mínimo. El criterio de Lawson define que el producto entre la densidad de núcleos con esa energía por el tiempo durante el que deben permanecer en ese estado debe ser .
Los dos métodos en desarrollo para aprovechar de forma útil (no bélica) la energía desprendida en esta reacción son el confinamiento magnético y el confinamiento inercial (con fotones que provienen de láser o partículas que provienen de aceleradores).
0 comentarios:
Publicar un comentario
Suscribirse a Enviar comentarios [Atom]
<< Inicio